The sparse fourier transform : theory & practice
نویسنده
چکیده
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications. The fastest algorithm for computing the Fourier transform is the FFT (Fast Fourier Transform) which runs in near-linear time making it an indispensable tool for many applications. However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear time, i.e., do not even sample all the data points, have become necessary. This thesis addresses the above problem by developing the Sparse Fourier Transform algorithms and building practical systems that use these algorithms to solve key problems in six different applications. Specifically, on the theory front, the thesis introduces the Sparse Fourier Transform algorithms: a family of sublinear time algorithms for computing the Fourier transform faster than FFT. The Sparse Fourier Transform is based on the insight that many real-world signals are sparse, i.e., most of the frequencies have negligible contribution to the overall signal. Exploiting this sparsity, the thesis introduces several new algorithms which encompass two main axes: • Runtime Complexity: The thesis presents nearly optimal Sparse Fourier Transform algorithms that are faster than FFT and have the lowest runtime complexity known to date. • Sampling Complexity: The thesis presents Sparse Fourier Transform algorithms with optimal sampling complexity in the average case and the same nearly optimal runtime complexity. These algorithms use the minimum number of input data samples and hence, reduce acquisition cost and I/O overhead. On the systems front, the thesis develops software and hardware architectures for leveraging the Sparse Fourier Transform to address practical problems in applied fields. Our systems customize the theoretical algorithms to capture the structure of sparsity in each application, and hence maximize the resulting gains. We prototype all of our systems and evaluate them in accordance with
منابع مشابه
Simple and practical algorithm for sparse Fourier transform
We consider the sparse Fourier transform problem: given a complex vector x of length n, and a parameter k, estimate the k largest (in magnitude) coefficients of the Fourier transform of x. The problem is of key interest in several areas, including signal processing, audio/image/video compression, and learning theory. We propose a new algorithm for this problem. The algorithm leverages technique...
متن کاملStatement of Research
My goal in research is to discover theoretical insights that can guide practitioners in the creation of useful systems. To this end, I try to focus on relatively simple algorithms that are feasible to implement and have small big-Oh constants; when finding lower bounds, I look for ones that give guidance in the creation of efficient algorithms. To calibrate my understanding of the relation betw...
متن کاملTheoretical and experimental analysis of a randomized algorithm for Sparse Fourier transform analysis
We analyze a sublinear RA‘SFA (randomized algorithm for Sparse Fourier analysis) that finds a near-optimal B-term Sparse representation R for a given discrete signal S of length N, in time and space polyðB; logðNÞÞ, following the approach given in [A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-Optimal Sparse Fourier Representations via Sampling, STOC, 2002]. Its time cost ...
متن کاملSparse time-frequency representation of speech by the vandermonde transform
Efficient speech signal representations are prerequisite for efficient speech processing algorithms. The Vandermonde transform is a recently introduced time-frequency transform which provides a sparse and uncorrelated speech signal representation. In contrast, the Fourier transform only decorrelates the signal approximately. To achieve complete decorrelation, the Vandermonde transform is signal...
متن کاملFast and Efficient Sparse 2D Discrete Fourier Transform using Sparse-Graph Codes
We present a novel algorithm, named the 2D-FFAST 1, to compute a sparse 2D-Discrete Fourier Transform (2D-DFT) featuring both low sample complexity and low computational complexity. The proposed algorithm is based on mixed concepts from signal processing (sub-sampling and aliasing), coding theory (sparse-graph codes) and number theory (Chinese-remainder-theorem) and generalizes the 1D-FFAST 2 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016